Copyright© Крайнюченко И.В., Попов В.П. 2005, All rights reserved

 

3. ОПРЕДЕЛЕНИЕ ПОНЯТИЯ «СИСТЕМА»

 

«От того, что мы понимаем под системой, в значительной степени зависит решение вопроса о специфических признаках системного подхода и системного анализа, а также в целом системных исследований [1]. Слово «система» (от греч. systema) означает нечто составленное из частей, соединение [2], и характеризует упорядоченность и целостность естественных объектов [2]. Система означала единство закономерно связанных друг с другом предметов, явлений, а также знаний о природе и обществе [3].

В период античной философии было осознано, что целое больше суммы его частей. К 30-м годам ХХ века в организменной биологии, гештальт психологии и экологии были сформулированы ключевые критерии системного мышления. Изучение организмов, их частей и сообществ, привело ученых к выводу, что эти организации могут характеризоваться понятиями «целостность», «связность», «взаимоотношения». Эти представления были поддержаны революционными открытиями в квантовой физике, в мире атомов и субатомных частиц [4].

В наше время слово «система» стали применять слишком широко. Это и система здравоохранения, и система образования, и нервная система, солнечная система и т. п. Начавшийся в 50 – 60 годы “системный бум” не только не уменьшил, но даже увеличил неопределенность толкования понятия система. Значительно возросло число его трактовок. В настоящее время существует немало работ, подробно разбирающих взгляды на это понятие.

Несмотря на то, что понятие система известно с давних времен, первые попытки определить его как самостоятельную научную категорию делаются лишь в тридцатые годы нашего столетия с появлением первых концепций общей теории систем (А. Богданов, Л. Берталанфи).

Л. фон Берталанфи определял систему как комплекс взаимодействующих элементов. «Всё состоящее из связанных друг с другом частей будем называть системой» [5]. Это определение самое широкое и самое простое потому, что в мире всё каким либо образом связано, и может быть названо системой. Дальнейший период весьма богат разнообразными подходами к пониманию смысла понятия “система”.

Например, в математике характерно понимание системы как отношения. Кибернетика делает акцент на выделение в системе входов, выходов, и способах переработки информации. Целесообразно провести классификацию множества определений.

Первую группу составляют наиболее общие определения системы как комплекса элементов, находящихся во взаимодействии [6]. Рассмотрим примеры, выделяя ключевые слова.

1.  В самом общем и широком смысле системой принято называть любое достаточно сложное образование, состоящее из множества взаимосвязанных элементов, которые как единое целое взаимодействуют с внешней средой [7].

2.      «В настоящее время достаточно рассмотреть систему как группу физических объектов в ограниченном пространстве, которая остаётся тождественной как группа в оцениваемом периоде времени» (Г. Бергман.) [Цит. по 1].

3.      Система - это “ансамбль взаимосвязанных элементов”. (Г. Е. Зборовский и Г. П. Орлов) [Цит. по 1].

4. «Система – упорядоченная совокупность элементов, между которыми существуют или могут быть созданы определённые отношения» [8].

5.      Система есть «целое, составленное из многих частей. Ансамбль признаков» (К. Черри) [Цит. по 1].

6. Система - размещение физических компонентов, связанных или соотносящихся между собой таким образом, что они образуют или действуют как целостность» (Дистефано) [Цит. по 1].

7.  Под системой обычно понимают наличие множества объектов с набором связей между ними и их свойствами. Объекты (части системы) функционируют во времени как единое целое [9].

8.   Система – это множество элементов с отношениями между ними и между их атрибутами (А Холл, Р. Фейджин) [10].

9.      Взаимосвязь самых различных элементов. Всё, состоящее из связанных друг с другом частей, есть система [11].

10.   Сеть взаимосвязанных элементов любого типа, концепций, объектов, людей. Систему можно определить как любую сущность, концептуальную или физическую, которая состоит из взаимосвязанных частей [12].

11. У. Гослинг понимает под системой «собрание простых частей» [1].

12. «Система» - взаимодействующий комплекс, характеризующийся многими взаимными путями причинно-следственных воздействий» (К. Уотт) [Цит. по 1].

13. Собрание или соединение объектов, объединенных регулярным взаимодействием или взаимозависимостью» есть система [13].

14. Система – это «упорядоченно действующая целостность» [13].

15. По определению И. Миллера система представляет собой “множество элементов вместе с их отношениями” [Цит. по 1].

При всех тех нюансах, которые отличают эти определения, у них есть общее. Данная группа определений обобщённо характеризует систему как совокупность (сеть, собрание, комплекс, ансамбль, группа, образование) множества частей, связанных (взаимодействующих, состоящих в отношениях, упорядоченных) между собой.

Отметим основные понятия, входящие в это определение. Части системы — это подсистемы, элементы. Взаимосвязи между элементами осуществляются как процесс взаимодействий. Все системы содержат множество элементов, которые находятся в неразрывной взаимосвязи друг с другом и в определенных отношениях. В свою очередь, эти отношения и связи образуют целое, отличное от простой суммы его составляющих.

По этому определению системой могут оказаться два любых произвольно выбранных объекта с очень слабыми связями. Однако кибернетический подход к системам не признает «слабые» связи. Современная теория информации утверждает, что при распространении сигнала его интенсивность падает, возрастает количество помех (шумов). Кибернетика изучает только такие системы, в которых сигнал не просто должен дойти до адресата, но и вызвать в нем реакцию обратной связи. Реакция сложного объекта возникает только на те сигналы, которые превышают «порог чувствительности» приёмника [14]. Ослабленные сигналы взаимодействия не вызовут реакции и не возникнет процесс авторегулирования.

Однако, не принятые кибернетикой определения первой группы, хорошо согласуются с философским пониманием системы. Наблюдения показывают, что все «уголки» видимой Вселенной подчиняются единым законам развития. Атом водорода на расстоянии в миллиарды световых лет излучает такой же спектр, как и водород Солнца. Строение галактик единообразно. Когерентность развития Вселенной наводит на мысль о её единстве, целостности, связанности (т.е. системности), хотя удлинение связей во Вселенной (тем более до бесконечности) должно ослаблять взаимодействие между частями (практически до нуля).

С позиций кибернетики, ослабление связей разрушает систему, превращает её в конгломерат и Вселенную нельзя признавать системой [15]. Налицо противоречие. Современная естественно – научная трактовка понятия «система» не совпадает с её философским звучанием, в котором достаточно существования любой связи (взаимодействия) между её частями, чтобы признать Вселенную системой.

Расхождение, по-видимому, заключаются в том, что для философии важен сам факт взаимосвязи (даже на бесконечно малом уровне), а для кибернетики, теории управления интерес представляют только функционально значимые связи. Проведенное сопоставление ещё раз подчеркивает незавершённость «Общей теории систем».

Не исключено, что «вселенские» связи осуществляются не только электромагнитными и гравитационными взаимодействиями, ослабевающими пропорционально квадрату расстояния, но и малоизученными пока взаимодействиями, например, торсионными [16]. Если это так, то противоречие снимается.

Вторая группа определений отражает точку зрения кибернетики, согласно которой выделяются входы и выходы системы. Входы и выходы связывают кибернетическую систему с окружающей средой. Через входы действуют стимулы внешней среды. Реакции системы осуществляются через выходы. При этом используется концепция «черного ящика», т.е. не раскрывается внутреннее, структурное содержание системы (ящика). «Черный ящик» является вещью в себе, его нельзя представить совокупностью элементов, т.к. неизвестно его устройство. Представление о системах в кибернетике ограничивается совокупностью абстрактных функций. Достаточно знания функциональной связи входов и выходов. Приведем примеры «кибернетических» определений системы.

1.«Система – любая совокупность переменных, которую наблюдатель выбирает из переменных, свойственных реальной «машине» (У. Росс Эшби) [1].

2.«Теория систем исходит из предположения, что внешнее поведение любого физического устройства может быть описано соответствующей математической моделью, которая идентифицирует все критические свойства, влияющие на операции устройства. Получающаяся в результате этого математическая модель называется системой» (Т. Бус) [1].

3. «Система – в современном языке – есть устройство, которое принимает один или более входов и генерирует один или более выходов» (Дреник) [1].

4. Система представляет собой отображение входов и состояний объекта в его выходах [17].

5. У. Эшби [18] и Дж. Клир [19] определяют систему как совокупность переменных. «Система есть множество предметов вместе со связями между ними и между их признаками» [196].

6.      О. Ланге, понимающий под системой «множество связанных, действующих элементов, рассматривает связь как один из видов отношений [1].

Видно, что кибернетическое понятие «система» максимально формализовано и символично (совокупность переменных, математическая модель, функции входа и выхода). Кибернетиков не интересовало, что находится внутри «черного ящика», важно как связаны функции на входе системы с функциями выхода. Именно это обобщение позволило увидеть сходство управления в машине и в организме [20, 21]. Однако любое упрощение неизбежно становится тормозом развития, к чему и привела концепция «черного ящика».

Выше уже отмечалось, что с точки зрения кибернетики понятие «система» можно распространять только до некоторого «горизонта» взаимовлияния. Сигнал по ходу движения рассеивается, ослабляется, засоряется помехами. С некоторым объектом может взаимодействовать только часть внешней среды, которую принято называть «полем деятельности» [7]. На объект существенное влияние может оказывать только часть факторов поля деятельности. Эту часть называют сегментом поля деятельности. И, наконец, внутри сегмента поля деятельности факторы являются неравноценными по своему влиянию на конечный (или этапный) результат деятельности объекта. Например, на поведение каждого человека влияет общество. Но наиболее сильное влияние оказывает небольшая группа людей (семья, начальство, друзья и др.).

Для осуществления во внешней среде той или иной функции должно происходить взаимосодействие системы со средой, причем в этом взаимосодействии конкретная функция может реализоваться только частью элементов системы на базе использования только некоторых их свойств. Например, бухгалтерия взаимодействует с внешней финансовой системой, а маркетинговая служба – с рынком. Кастлер [7] предлагает назвать эту часть системы сигнатурой. К основным системным единицам, можно отнести все элементы, оказывающие эффективное влияние на выполнение и обеспечение наиболее важных функций системы.

«Кибернетический «взгляд на системы отличается прагматичностью, селективностью. Сознание строит систему, исходя из потребностей. «Лишнее» отсекается, задача упрощается для формального описания. Но при селекции важно знать меру, т.к. вместе с водой «из корыта можно выплеснуть и ребенка».

Прагматичность кибернетики упрощает действительность, оставляет вне поля зрения многие стороны реальности. Например, известное явление «телепатия» (передача мыслей на расстоянии) не может признаваться кибернетикой, т.к. неизвестны каналы телепатической связи. А если нет связей, то нет и системы. Однако, могут существовать ещё непознанные наукой каналы связи. В этом случае кибернетическая теория систем, отрицающая факт телепатии, становится «тормозом» в развитии науки.

Третью группу составляют определения системы, связывающие её с целенаправленной активностью. Цель - это состояние, которое система должна достичь в процессе своего функционирования [22]. Цель – это направленность поведения открытой нелинейной системы, наличие «конечного состояния» (завершающего лишь некоторый этап её развития). Система – это «сложное единство, сформированное многими, как правило, различными факторами и имеющее общий план или служащее для достижения общей цели» [1].

Например, Верещагиным И. М. система определяется как «организованный комплекс средств достижения общей цели. Ухтомский А. А. ввел понятие функционального органа – временного сочетания функционально различных элементов. Это направление было развито П. К. Анохиным [23,24], исследовавшим нейронные системы мозга. «Система – это функциональная совокупность материальных образований, взаимосодействующих достижению определённого результата (цели), необходимого для удовлетворения исходной потребности».

Строгое сочетание процессов и структур, объединенных для достижения цели, носит название функциональной системы. В функциональную систему включаются только те элементы, которые содействуют достижению цели. Все элементы и функции, не помогающие этому результату, мысленно устраняются. Системный анализ объекта, заключается в формировании субъективного образа функциональной системы, выделении сознанием среди множества элементов и связей только тех, которые приносят пользу в достижении целей системы.

Использование принципа цели в определении системы вызывает много вопросов. Представления о целеустремленности систем появилось из исследований творческой деятельности человека. Всем сознательным действиям человека предшествует формулирование цели. Сложилось ложное впечатление, что для целеполагания требуется воля, разум человека. Позже понятие «цель» распространили на неживые системы.

В более широком определении цель представляет собой направление «внутренней активности объекта» [25]. «Основное и характерное направление активности в данный момент времени можно назвать целью деятельности объекта, а его поведение, обусловленное этим направлением активности — целенаправленным» [26].

Однако для многих природных систем цель развития неизвестна. Например, биоценозы содержат множество элементов, связанных между собой. Поддерживается гомеостазис, наблюдается эволюция, но для какой цели? Какая цель у развивающейся Вселенной? Или какова цель гипотетического творца? Очень часто в человеческой деятельности истинные цели скрываются.

У каждого сложного объекта должно существовать множество целей (дерево целей), тогда какую цель принять за системообразующую? Однако у всех длительно существующих объектов среди неизвестных целей обязательно присутствует цель самосохранения, выживания.

Можно сделать заключение, что принцип цели не является универсальным для всех определений систем, а только для тех, в которых можно безошибочно определить цель.

Четвертую группу определений системы выводят через указание признаков, которыми должен обладать объект, чтобы его можно было отнести к категории «система» [27]. А. И. Уёмов считает, что «наличие вещей и отношений между ними является необходимым, но недостаточным условием образования системы». По его мнению, необходимо привлечь ещё одну категорию – «свойства». Таким образом, основой концептуального аппарата, используемого в рассматриваемом варианте общей теории систем, являются категории: «вещи», «свойства» и «отношения» [28].

Такая методологическая установка отрицает возможность определять системы только по принципу взаимосвязанности (первая группа определений). Всякое взаимодействие лишь тогда приобретает системные признаки, когда оно получает своё оформление через свойства «целостность» и «интегративность» (эмерджентность). Приведём примеры таких определений.

1.    Система – это совокупность элементов, организованных таким образом, что изменение, исключение или введение нового элемента закономерно отражается на остальных элементах [29].

2. «Системой является не всякая совокупность элементов, а лишь такое образование, в котором все элементы настолько тесно связаны, что данное образование противостоит внешним телам как единое целое [30].

3.«Системой» является «совокупность элементов, находящихся в отношениях и связях между собой и определяющих определённую целостность, единство» [31].

4. Система – множество элементов, находящихся в отношениях и связях друг с другом, которые образуют определённую целостность, единство [32].

5. Под системой понимается совокупность элементов, соединенных отношениями, порождающими интегративное или системное свойство, отличающее данную совокупность от среды и приобщающее к этому качеству каждый из её компонентов [33].

6.              «Системой будет являться любой объект, в котором имеет место какое-то отношение, удовлетворяющее некоторым заранее определённым свойствам» [34].

Приведенная группа определений, предполагает существование систем (где присутствует интегративность) и не систем (где отсутствует интегративность).

Очевидно, что любой объект человеческое сознание умеет выделять на фоне сплошной среды. Выделение осуществляется по некоторым отличительным признакам. Это могут быть свойства, форма, функции. Если сознание его идентифицировало, следовательно, объект отличается от среды какими – то интегративными свойствами. Если объект не отличим от среды, то для сознания он отсутствует, следовательно, не может быть представлен в виде системы. Только после выделения объекта из среды его начинают расчленять на элементы, связи, отношения. Подробный анализ этой проблемы проведен в главе 7.

Итак, существует семейство понятий «система». При всех нюансах, которые отличают все эти определения, у них есть и общее - завершённость внутреннего строения. Система дифференцируется относительно среды по характерному набору признаков (свойств), оставаясь с ней связанной. Устойчивость признаков при возмущающем воздействии среды определяется внутренней активностью системы. Эта активность называется самоорганизацией.

Следует подчеркнуть, что понятие «завершённость» имеет отношение к той среде, в которой система функционирует. Изменение среды создаст конфликт, и структура системы перейдет в ранг незавершенных структур. Самоорганизация будет создавать вектор развития в направлении завершенности (адаптация).

Наиболее общим определением понятия «система» является: целостная совокупность множества связанных элементов», обладающая различимыми свойствами и сохраняющая их некоторое время. При этом свойство самой системы не сводится к сумме свойств составляющих её элементов. Стремление сохранять свойства (гомеостатирование, самосохранение) является общим признаком всех консервативных систем.

Итак, понятия элемент, связь, граница и цель системы являются результатом аналитической деятельности человека. Каждый исследователь видит то, что его интересует, поэтому напомним определение Клира: «Системой является все, что мы хотим рассматривать как систему». Каков интеллект, такова и система. Поэтому ОТС - это еще не законченная теория, а комплект концепций, находящийся в развитии.

В этой связи можно рассмотреть вопрос о классификации систем  на открытые и закрытые. В сплошной, непрерывной, связанной среде не может существовать изолированных фрагментов. Только сознание способно создать изолированную модель. Если игнорирование внешних связей не приведет к ошибочным выводам, то такое упрощение допустимо. Но известны факты из истории науки, когда такое упрощение приводило к ложным заключениям. Речь идет о прогнозе тепловой смерти Вселенной, основанном на законах классической термодинамики. Законы, выведенные на основе упрощенных, изолированных систем, оказались ложными (приложение 1).

Идеи глобального эволюционизма вносят новые взгляды в понятие «система». Развивающаяся гносеология (теория познания), переводит понятие «система» из сферы объективного в область субъективного.

В главе 1 мы уже касались вопроса о субъективности понятия «система». Привычка отождествлять систему и объект, по поводу которой строится система, приводит к ряду трудностей. Чтобы их избегать, необходимо использовать систему как теоретический инструмент исследования объекта, а не как сам объект. Для реальных объектов лучше использовать понятие «организованность». Понятия «организованность» и «система» относятся как объективное и субъективное. Организованность существует в природе независимо от сознания. Система – это способ отражения организованности в сознании.

 

 

 

 

 

Выводы

 

1.      Существует семейство понятий «система». Наряду с отличиями у них есть и общее – это завершённость внутреннего строения.

2.      Понятие «завершённость» имеет отношение к той среде, в которой система функционирует.

3.      Система дифференцируется относительно среды по характерному набору признаков (свойств), оставаясь с ней связанной.

4.      Устойчивость признаков при возмущающем воздействии среды определяется внутренней активностью системы. Эта активность называется самоорганизацией.

5.      Наиболее общим определением понятия «система» является: целостная совокупность множества связанных элементов, обладающая различимыми свойствами и сохраняющая их некоторое время. При этом свойство самой системы не сводится к сумме свойств составляющих её элементов.

6.      Понятия элемент, связь, граница и цель системы являются результатом аналитической деятельности человека.

7.      Каждый исследователь видит то, что его интересует, поэтому, каков интеллект исследователя, такова и система.

8.      ОТС - это еще не законченная теория, а комплект концепций, находящийся в развитии.

 

Контрольные вопросы

 

1.                                    Как определял систему Л. фон Берталанфи?

2.                                    Проведите классификацию определений «система».

3.                                    Дайте представления о каждой группе определений «система».

4.                                    Почему ОТС не является законченной теорией?

5.                                    Сформулируйте наиболее общее определение «система».

6.                                    Какие понятия лежат в основе представления «система»?

 

Литература

 

1.      Садовский В. Н. Основания общей теории систем. - М.: 1974.

2.      Философский словарь. - М.: Политиздат, 1980.

3.      Большая советская энциклопедия. Т.39. С.158.

4.      Блохинцев Д. И. Основы квантовой механики. - М.: 1961.

5.      Берталанфи Л. Общая теория систем. - М.: Системное моделирование, 1969.

6.      Советский энциклопедический словарь. - М., 1980. с. 1109.

7.      Крылов В. Ю., Морозов Ю. И. Кибернетические модели и психология. -  М.: Наука, 1984.

8.      8.Спицнадель В. Н. Основы системного анализа: Учебное пособие.- СПб.: Изд. .дом «Бизнес-пресса», 2000.

9.      Жариков О. Н., Королевская В. И., Хохлов С. Н. Системный подход к управлению: Учеб. пособие для вузов / Под редакцией Персианова.- М.: ЮНИТИ-ДАНА, 2001.

10.  Лекторский В. А., Садовский В. Н. О принципах исследования систем // Вопросы философии,1960.№8.

11. Бир Ст. Кибернетика и управление производством. - М.: Физматгиз, 1963.

12. Акофф Р. Л. Системы, организации и междисциплинарные исследования // Системные исследования. Ежегодник, 1969. М., 1969.

13. Klir G. J. An Approach to General System Theory. - New York, 1969.

14. Дружинин В., Конторов Д. С. Системотехника. - М.: Радио и связь, 1985.

15. Милюхин С. Т. Материя в её единстве, бесконечности и развитии.- М.: 1966.

16. Философия современного естествознания: Учебное пособие для вузов / По общ. ред. проф. С. А. Лебедева. – М.: ФАИР – ПРЕСС, 2004.

17. Месарович М. Основание общей теории систем // Общая теория систем. - М.: Мир, 1966.

18. Эшби Р. Введение в кибернетику. - М.: Иностр. лит., 1970.

19. Клир Дж. Системология. Автоматизация решения системных задач. - М.: Иностр. лит., 1990.

20. Винер Н. Кибернетика. - М.: 1968.

21. Винер Н. Кибернетика или управление и связь в животном и машине. - М.: Иностр. лит., 1968.

22. Фетисов В. А. Основы системного анализа. М.: 1988.

23. Анохин П. К. Узловые вопросы теории функциональных систем. М.: Наука, 1971.

24. Анохин П. К. Философский смысл проблемы естественного и искусственного интеллекта. // Вопросы философии, 1973, №6.

25. Паск. Г. Значение кибернетики для наук о поведении. - // Кибернетические проблемы бионики. - М.: Мир, 1972, вып. 2.

26. Князева Е. Н. 30 лет синергетике. // Вопросы философии, 2000. №4.

27. Ерохина Е. А. Теория экономического развития: системно-синергетический подход. - М.:1999.

28. Уёмов А. И. Диалектико – материалистическое понимание связей между явлениями. // Философские науки, 1958. №1.

29.Топоров В. Н. Из области теоретической топономастики // Вопросы языкознания, 1962. №6.

30. Милюхин С. Т. О диалектике развития неорганической природы. -  М.: 1966.

31. Блауберг И. В., Садовский В. Н., Юдин Э. Г. Системный подход в системной науке, проблемы методологии системного исследования. - М.; Мысль, 1970;

32. Лопатников Л. И. Краткий экономико-математический словарь.- М.: Наука,1979.

33. Шабров О. Политическое управление. - М.; Интеллект, 1997.

34. Уёмов А. И. Системный подход и общая теория систем. - М.: Мысль, 1978.

 

Copyright© Крайнюченко И.В., Попов В.П. 2005, All rights reserved

 



Хостинг от uCoz